大陆怎么浏览外国网站
手机怎么浏览外国网站
怎样才能浏览外国网站

Our laboratory is interested in how microorganisms co-evolve with their environment (i.e. how microbial metabolic activities change the environment, and how the environment shapes these activities), with a focus on understanding how electron transfer reactions support energy conservation in the absence of oxygen. We are particularly interested in the physiological strategies taken by bacteria when they are growing slowly–the dominate pace of life on the planet, yet one that is poorly understood. Much of our research involves the study of colorful, redox-active metabolites (RAMs) called phenazines, molecules produced by many different types of bacteria. We are interested in how RAMs help structure microbial populations and communities in various contexts, including biofilm aggregates found within human chronic infections or near the roots of plants. Central to our ability to achieve relevant mechanistic insight is our commitment to characterizing the complex contexts that motivate our reductionist research. Ultimately, we are driven by the long-term goal of contributing new approaches to promoting both human and environmental health.

We are an interdisciplinary lab, and seek help from talented scientists of all types to explore these topics. We are committed to training and enabling young scientists with diverse backgrounds (racial, gender, country of origin, sexual-orientation, ethnicity, etc.) to make discoveries during their time in our laboratory and to prepare for a variety of impactful STEM careers.

Please explore our site and contact us if you are interested. Caltech is an exciting place for microbiology (CEMI) and sustainability research (RSI-EBE Initiative)!

          2025黑洞加速下载  HJ 官网网址电脑版下载用不了了2025  xoocloud最新版,xoocloud电脑版下载,xoocloud2025,xoocloud不能用了  大师级国际机场官网,大师级国际机场破解版,大师级国际机场免费试用,大师级国际机场2025  启点加速器破解版,启点加速器2025年,启点加速器vp,启点加速器vn  金蛙加速器mac下载,金蛙加速器vnp,金蛙加速器免费试用,金蛙加速器2025年  suncl跑路了,suncl2025年,sunclvpm,sunclvn  云云云加速器npv,云云云加速器vqn,云云云加速器跑路了,云云云加速器2025